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Abstract. In this paper, we study image-based localization as a com-
ponent of a vision navigation system. We perform an experimental ver-
ification of image matching techniques on a real UAV flight in a rural
area. Images from onboard camera are matched to the satellite images
based on last known position. We find deep front-end SuperPoint with
deep middle-end matcher SuperGlue better suited than the pretrained
LoFTR for the image-based localization in feature-poor areas. The pro-
posed component implementation allows UAVs for emergency localiza-
tion based on single frame with error below 100m in a rural area.

Keywords: Image-based localization - UAV localization - Image match-
ing.

1 Introduction and Related Work

We aim to ensure redundancy of satellite navigation in applications including
acquisition of photographic materials with the use of UAVs [5]. The goal is to
achieve a visual navigation component for the autopilot by matching the camera
images to the orthophotomap for a large operation area. Image based localiza-
tion for UAVs can be considered as full 6-dof [6] for indoor applications as well
as for gps-denied outdoor environments [1]. Such approaches use conventional
algorithms [7], either deep learning [7] or mixed [8]. For this purpose, the
Mutual Information algorithm [12], image segmentation [3] and graph search
are also often used [2]. For the purpose of image-based localization, hand-crafted
image matching methods such as ORB [9] can be used. In contrast, newer ap-
proaches are based on neural networks and are learned from data during the
training process. Use of neural networks is relevant to UAVs since availability of
high performance processing on embedded devices such as Nvidia Jetson Xavier
series or Intel Movidius. Feature detector and descriptor SuperPoint [4] was in-
troduced as a deep front-end. SuperGlue introduced in [10] is a deep middle-end
matcher which utilizes graph neural networks to solve assingment problem. In-
troduced recently, LoFTR is a detector-free method inspired by the SuperGlue
matching [11] not limited to detected keypoints.
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2 Redundant Image Based Localization System for UAVs

To determine the absolute geographic location we use: the recently known posi-
tion, the current image from the camera and the geo-referenced orthophotomap.
The last known position is used to limit the the analyzed area - Region Of In-
terrest (ROI) in order to ensure the proper performance of the algorithm. Then
the current camera image frame is compared with the cut ROI. The selected
deep neural networks determine matches between images. Based on the best fit,
a homography matrix, and a perspective quadrilateral are computed. The con-
fidence of measurement depends on the number of detected points. The return
is calculated from the middle of the top edge of the quadrilateral.

We compare learning-based feature detector and descriptor SuperPoint [4]
with feature matcher SuperGlue [10], and detector-free LoFTR [11]. During sys-
tem initialization, a rough start position is taken to limit the ROI (Region Of
Interrest) search area from the whole map. Using the above algorithms, common
points characteristic for the ROI and the current frame from the on-board cam-
era are found. On the basis of these points, a homographic matrix is calculated,
by means of which the perspective rectangle (blue) is calculated. Its geometric
center is the location. Currently, the system analyzes each frame separately.

(a) SuperPoint + SuperGlue (b) LoFTR

Fig. 1: Visual comparison of image-based localization methods. Large rectangle
is ROI used for localization. GPS trajectory in dark blue. Points in cyan - lo-
calization result. Cyan quadrilateral - represents field-of-view of the localized
camera.

3 Experimental Results

The images generated by the system, based on a real UAV flight in a rural
area, are shown below. For our input, conventional descriptor methods were only
worked in simulated flight in Google Earth Studio, compared to a map with the
same source. In order to get closer to the real conditions, a video was recorded
made by a drone from a height of 120m above ground level. Flight logs were
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used for the Ground Truth reference. In the case of a real flight recording, the
above descriptors found too few common points. Only the use of deep learning
techniques allowed for correct matching in this case. This may be related to
unfavorable lighting, or to significant differences between the current image and
the historical one from Google maps. The season was similar, so the colors of the
vegetation did not matter. Figure 1 shows the visualization of the perspective
(camera point of view) in the form of a blue quadrilateral placed on the map.
Its geometric center is a preliminary location estimation. It can be noticed that
both algorithms work worse in the case of obtaining a homogeneous image.

It has been observed that the even distribution of characteristic points in the
image has a significant influence on the accuracy of the location. The method
based on the average distance between the nearest, neighboring points was used
to measure the uniformity coefficient. This tells whether the data points are
concentrated or scattered. The graph below shows the error and the average
distance between points in consecutive video frames. On Figure 2 a correlation
between the calculated location error and the average distance of the point from
the nearest neighbor can be observed.
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Fig.2: 2D Error in meters related to the number of good matches and mean
keypoint distance for SuperPoint with SuperGlue and LoFTR.

4 Conclusion and Future Work

We compared deep learning-based image matching methods for the purpose of
UAYV localization. Results show smaller error for keypoint-based method Su-
perGlue in favor of keypoint-free LoFTR pretrained in this setup. All correct
matches were used to calculate the homography matrix. In the future, it is
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planned to select only those with the greatest probability of correctness. Fine-
tuning LoFTR on aerial images should improve the results. The proposed image-
based localization module works on a single frame against a large ROI. Therefore,
localization error on raw outputs is too large for UAV navigation purposes and
should be fused with IMU and visual odometry to achieve a good accuracy in
gps-denied environments. The described work concerns the analysis of a short
video recording on a small area, however, it allows for further orientation of the
work in an optimal way.
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