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Abstract. Traffic sign detection is a key task in autonomous driving. In
addition to high accuracy, the algorithm must operate in real-time on an
embedded device. Traffic signs are often found occupying a small area of
a high-resolution image and can be easily confused with other signs and
billboards. We analyze the aforementioned challenges, using the YOLOv4
model, which we train on the Mapillary Traffic Sign Dataset (MTSD)
with a designed data augmentation method and weighted loss function.
We achieve AP50 = 59.0% on the validation dataset. The contribution
of this work is a quantized YOLOv4 traffic sign detector with an input
resolution of 960 × 960px. The proposed model is optimized to achieve
better performance on devices with limited computational resources. Our
model runs at 11.2 FPS on Nvidia Jetson Xavier AGX.
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1 Introduction

Robotic applications of object detection algorithms often require implementation
on devices with limited computational resources and memory. To run the existing
object detectors in real-time, lightweight models and limited input resolution
are required, which can lead to poor detector accuracy [1, 9]. To alleviate these
problems, techniques for optimizing the model inference performance, such as
quantization and pruning [4, 5], are used. Our goal is to analyze the challenges
of real-time traffic sign detection and suggest a method that deals with this
problem on embedded devices. In this work, we use MTSD to train the YOLOv4
model, then optimize our network with the tkDNN [9] library for inference on an
embedded device, and assess the detection quality with 12 COCO [6] metrics.
The contributions of this work are as follows: a detailed analysis of a large
traffic-signs detection dataset (MTSD), a trained model capable of detecting
signs belonging to 314 classes (AP50 = 59.0%), and analysis of the results and
suggestions on how to improve the system.
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2 Related Work

In recent years, many real-time object detection methods, such as [1], as well as
autonomous driving datasets [11, 3] have been published. These datasets provide
a variety of data from different sensors, but lack detail in road sign classes. Until
recently, a thorough examination of detectors in traffic sign detection was practi-
cally impossible, due to the absence of a large dataset that would contain realistic
data [2, 8, 13]. Traffic sign detection can be solved using single-stage object de-
tection methods with large input image size, as in TSingNet [7], which achieves
20.6 FPS using the desktop Nvidia GeForce GTX 1080 GPU. Object detection
networks can be optimized to achieve high performance on embedded systems
when moving to embedded GPUs, such as Nvidia Jetson series models [12].

3 Dataset Analysis

In Tab. 1 we demonstrate the main features of selected traffic sign datasets.
MTSD is characterized by the largest number of object instances and classes, as
well as the highest variability in image and object size. It has 41909 labeled, and

Table 1. Comparison of traffic sign datasets. Sizes were calculated as geometric means
s =
√
w · h

Dataset Images Objects Classes Image size Object size Country Year

RTSD [8] 59188 104358 198 1052.02±188.95 38.76±22.85 Russia 2016
TT100K [13] 16811 26349 182 2048.00±0.00 45.85±31.62 China 2016
MTSD [2] 41909 206388 314 2837.99±911.44 63.10±71.62 Global 2019

10544 unlabeled images. Each object is annotated with an axis-aligned bounding
box and an identifier of one of the 314 classes. The classes are grouped into 5 main
categories: information, complementary, regulatory, warning and other. Other is
both a category and a class, and accounts for about 70% of objects. In addition
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Fig. 1. Histogram of relative object areas in the MTSD dataset.

to the uneven class distribution, many images are larger than 10 MPx and most
objects take up less than 1% of that area (see Fig. 1).
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4 Results

We trained two YOLOv4 [1] object detectors with 960 × 960 input resolution
and the SGD optimizer with momentum and weight decay. The first training
process involved minor color and geometric transformations and allowed us to
achieve AP50 =41.5%. The second model was trained on a dataset obtained with
a more complex data augmentation method, which together with the use of the
weighted cost function, increased the AP50 to 59.0%. The model with higher
AP50 was optimized (FP32, FP16, INT8) using tkDNN [9] to enable inference
on Nvidia Jetson Xavier AGX. In Table 2 we show the impact of quantization
on the quality and speed of the detector.

Table 2. COCO metrics [6] and speed (defined as frames per second) of YOLOv4 on
the MTSD validation set.

Precision FPS AP AP50 AP75 APS APM APL AR1 AR10 AR100 ARS ARM ARL

FP32 4.2 34.4 59.0 35.6 31.9 51.3 56.7 44.9 53.5 53.6 50.2 64.3 68.5
FP16 9.0 34.4 58.9 35.6 31.9 51.3 56.4 44.9 53.6 53.6 50.3 64.3 67.9
INT8 11.2 33.4 56.1 35.3 29.2 52.7 58.9 43.9 51.0 51.1 47.0 64.0 68.4

Considering the reduced input resolution and the large number of small in-
stances, we decided to recalculate the metrics, discarding tiny (s < 82) and very
tiny (82 ≤ s < 162) objects [10]. The new validation datasets had 19 419 and
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Fig. 2. The impact of discarding tiny and very-tiny objects on the average precision.

11 518 instances, respectively, compared to 26 101 objects in the original dataset.
Fig. 2. shows the resulting changes in AP.

5 Conclusion and Future Work

The results presented in Fig. 2 show that the tiny and very tiny objects decrease
the average precision (AP) of traffic signs detection (by up to 9.8% in our ex-
periments). Optimizing the model does not degrade the quality, but allows for
3 times faster inference, as shown in Tab 2. For the INT8 model, an increase
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in APM and APL was observed. An in-depth analysis of the effect of sample
selection on quality is necessary, and we consider it to be our future work. In
addition, we plan to investigate techniques such as two-step detection (utiliz-
ing Region of Interest proposals), detection in original resolution, validation on
additional datasets, and analysis of AP for tiny and very tiny objects.
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