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Abstract. This paper presents a real-time solution for place recognition
in indoor environments using a convolutional neural network for extract-
ing embeddings from omnidirectional images, which allows the robot to
register a description of the entire surroundings. The proposed neural
network recognizes places on distorted images from a catadioptric cam-
era, in contrast to the more widely used approach which is based on pro-
ducing panoramic images from omnidirectional images, which involves
many mathematical transformations. The proposed solution achieves ro-
bust place recognition results owing to efficient retrieval of embeddings
created exploiting transfer learning and fine-tuning on a limited number
of actual omnidirectional images. The localization system is implemented
on a NVIDIA Jetson TX2 computer with a general purpose graphics pro-
cessing unit. The proposed neural network architecture makes it possi-
ble to process the omnidirectional images in real-time on this embedded
hardware, which provides cost and energy efficient means of appearance-
based localization for indoor service robots
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1 Introduction

One of the most important aspects of robot autonomy is the ability to deter-
mine agent’s location in the environment. Passive cameras are arguably the most
popular sensors for robot localization, while particularly interesting are the om-
nidirectional cameras that enable the whole local scene to be registered in one
image. Omnidirectional images are convenient for appearance-based visual local-
ization, called also place recognition. This approach yields information about the
similarity of the places observed in the current perception and locations stored
in a database [3]. Although appearance-based localization does not provide met-
ric information about the position of the robot in a global reference system, the
ability to tell if the robot is close to one of the known locations is often sufficient
for indoor navigation.

Therefore, we propose a novel approach that adopts a Convolutional Neural
Network (CNN) architecture to process the omnidirectional images for real-time
place recognition. The proposed system exploits the concept of global image
descriptors, which was already proved to be efficient in place recognition [1].
We employ a CNN to produce the descriptors directly from the omnidirectional
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images, thus avoiding the computation overhead required for producing undis-
torted panoramic images, which are typically used in place recognition systems
for catadioptric cameras [6].

2 Localization System Overview

The localization procedure is based on finding the omnidirectional image from
a known database that is most similar to the one currently acquired by the robot.
As the database images are registered at known locations, finding the one that
has the minimal distance (in the sense of appearance similarity) to the current
perception makes it possible to roughly localize the robot.

We use a Labbot mobile robot with an integrated omnidirectional vision
sensor [4] placed on top (Fig. 1a). The catadioptric sensor consists of a Microsoft
Life Cam camera with a hyperbolic mirror which provides a 360◦ field of view
and yields images in 640×480 resolution. The sensor is equipped with a NVIDIA
Jetson TX2 computer with an integrated 256-core Pascal architecture General
Purpose Graphics Processing Unit (GPGPU). This unit is enough to run our
localization system in real-time.

In this research a dataset of 606 images (Fig. 1c and 1d) describing the
robot’s environment was acquired in one of the Poznan University of Technology
buildings (Fig. 1b). In order to remove the areas in the images that do not
carry useful information, the raw images are masked, which removes the area
outside the hyperbolic mirror, and the area reflecting the camera (Fig. 1e). These
images are processed by our CNN to obtain embeddings of the images. Finally,
descriptors of 2048×1 size are computed for each image and stored in a database
of 2048×n size which is our global map for appearance-based localization over
n reference images (n=484 in the experiment). Then the algorithm creates an
index from the global map (using Faiss[2] library), which is used for efficient
similarity search. All these operations are accomplished off-line.

The main localization task is done on the Jetson platform in real-time. First,
the CNN model and the index of images are loaded to the memory, then the can-
didate images are being found using KNN search in the descriptor space among
the descriptors of images from the database. The real-valued descriptors are
compared using the L2 distance, which turned out to be more computationally
efficient than binarizing the embeddings and using the Hamming distance.

3 Deep Learning Architecture

The advantage of CNN in the image description task over traditional descriptors
is related to the ability of a CNN to extract rich features. The learned descriptors
are more robust to changing lighting or changes in the robot orientation than
classic global image descriptors, particularly, if an extensive data augmentation
process is applied while learning to disregard these changing factors.

The procedure of extracting image features and storing them in an efficient
format is called embedding. It makes possible to access the feature-based de-
scription without having to pass the images from a database through the same
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Fig. 1: Labbot robot with the catadioptric vision system (a), robot paths while
collecting the images – different colors indicate different paths, then divided into
segments (b), omnidirectional images of different locations (c,d), an omnidirec-
tional image after masking (e), and examples of data augmentation (f).

neural model as the query image, as it is done, e.g. by Siamese networks [7] used
for image retrieval.

We have tested a number of CNN architectures as the feature extractors in
our system, finally choosing the EfficientNet [5] in B5 variant, which has 577
layers, with the input image size defined as (456,456,3). This network has high
accuracy with a relatively small number of model parameters, which positively
affects the processing speed in our embedded system. Due to the fact that the
EfficientNet B5 was pre-trained on images (Imagenet dataset) not related to the
target dataset, the network was fine-tuned before use, unfreezing a number of
layers and using the categorical crossentropy loss function. This process was im-
plemented using the dataset of around 10000 augmented omnidirectional images,
produced from the previously gathered database (Fig. 1f).

A practical problem in the considered scenario was the high self-similarity of
the indoor environment. As the images were acquired roughly every 0.5 m along
the robot path, the neighboring images in the original database are very similar
and often indistinguishable to human being. Therefore, the entire dataset was di-
vided manually into 17 different sections, each section describing a topologically
different location. Then, the localization process is executed only with respect
to these 17 meaningful locations, while each of them is represented by 30 to 40
acquired images, which are partially overlapping. In the training process, each
section was divided into the training (60%), validation (20%) and test (20%)
sequences.

The best training results were obtained for unfrozen 50 last layers, learning
rate of 1e−4 and batch size 16, with the resulting training loss: 0.1605, training
accuracy: 0.9596, validation loss: 0.1183 and validation accuracy: 0.9796 (Fig. 2).

105



M. Rostkowska

Fig. 2: Model training results Fig. 3: Confusion matrix for 17 sections

4 Results

On the test dataset containing 122 pictures, the average accuracy of place recog-
nition was 98% (Fig. 3), while the average processing time of a single picture was
480ms, with standard deviation of 83ms and max time of 1313ms, which allows
localization at frame rate of the robot’s camera. An example of correct place
recognition is given in Fig. 4. The most often sections mismatching is related to
a situation where the same place is the beginning of a new section and the end
of the previous one. Errors are also caused by blurred images and light spots.

Fig. 4: Results of sample section predictions. The first image is a query, the others
are the four closest neighbors. In square brackets there is the section number,
and next to it is the L2 distances between the query and presented image.

5 Conclusion

This short paper demonstrated that a CNN can be trained efficiently, using trans-
fer learning and fine-tuning approach, to produce embeddings that describe dis-
torted omnidirectional images in an appearance-based localization system. The
proposed architecture makes it feasible to run the entire process in real-time
on-board of an integrated sensor with an embedded Jetson TX2 computer. Fur-
ther research concerns applying spherical representations to the omnidirectional
images to avoid the inactive areas, and employing a more advanced learning
technique, such as triplet loss.
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