
Spatial Information in Graph Convolutional
Neural Networks

Bart lomiej Wójcik and Arkadiusz Tomczykr0000´0001´9840´6209s

Institute of Information Technology
Lodz University of Technology

al. Politechniki 8, 93-590 Lodz, Poland
arkadiusz.tomczyk@p.lodz.pl

Abstract. In recent years, to enable application of convolutional neural
networks to structures other than regular grids (e.g. graphs), different
definitions of convolution operation were proposed. Some of them, how-
ever, do not take into account spatial coordinates of graph nodes, if they
are available in the considered dataset, and focus only on node features.
In this work we propose three strategies, which allow to add that infor-
mation to network architectures. The presented approach leads to results
improvement on four benchmark datasets.

Keywords: Convolution · Graph neural networks · Spatial information.

1 Introduction

Convolutional neural networks CNN ([7]) are still state-of-the-art methods of
image processing. Analyzing working principle of single convolutional layer1, it
is evident that such classic convolution inherently depends on spatial distribution
of pixels. To be more specific, calculating result h1i P Rm of single convolution
layer for pixel i we consider features hj P Rn of pixels j in the local neighborhood
N piq. The relative position pj,i “ pj ´ pi P Rd allows to identify corresponding
parameter of trainable kernel (mask).

Currently, convolutional neural networks are applied not only to regular
structures (grids) but also to irregular ones (graphs). Graph nodes are also de-
scribed with feature vectors, as pixels in the case of images. There are however
substantial differences. First of all, the neighborhood N piq is not fixed - differ-
ent nodes can have different number of neighbors. Secondly, the spatial relations
between nodes need not be known since in general case nodes need not to have
spatial coordinates assigned (e.g. in social networks) and even if they have, those
coordinates need not to be expressed by integer numbers. Finally, additional
knowledge can be encoded in features of edges connecting graph nodes2. Con-
sequently, the definition of convolution operation had to be modified to solve

1 In this paper we focus only on convolutions and additional elements of CNNs achi-
tectures like: non-linearities, normalizations, etc., are omitted.

2 Edge features, although considered in many graph convolutional networks, are not
considered in this work to focus only on spatial coordinates of nodes.



B. Wójcik, A Tomczyk

all of those problems. Most of the existing approaches ([6, 4, 8, 5, 1, 2]), can be
described in the following form:

h1i “ LINLpiq,lpiqphiq `
ü

jPN piq
LINMpj,iq,mpj,iqphjq (1)

Matrices Lpiq, Mpj, iq P Rmˆn and vectors lpiq, mpj, iq P Rm can be fixed or
contain trainable parameters,

Ü

denotes a differentiable, permutation invariant
operator, e.g. sum, mean, max, etc., whereas LIN3 is a linear transformation of
feature vectors. Some of those approaches in a natural way can handle spatial
coordinates of graph nodes. The rest of them, however, do not consider it all.
In this work we investigate how to use effectively the latter architectures in
problems where node positions are available.

2 Method

Classic graph convolutional neural networks handle node positions in three typ-
ical ways. Firstly, some of them, e.g. MoNet [8] and SplineCNN [4], try to natu-
rally generalize classic CNNs. It requires training of continuous kernel functions
(masks) to directly operate on continous relative coordinates pj,i. They model
them using either gaussian mixture model or B-spline bases, respectively. Sec-
ondly, to our best knowledge, there is one method SGCN [2] which tries to tackle
the same problem without following CNN strategy. In this case:

Mpj, iq “ diagpσpUpj,i ` bqq (2)

where U P Rnˆd, b P Rn and σ is a nonlinear function (ReLU was used). A
limitation of such formulation is the fact that here m “ n. To partially avoid it,
results of several operations can be concatenated. Finally, there is a numerous
group of methods like: GCN [6], GAT [1], GraphSAGE [5] etc., that simply
ignore those positions focusing on node features only.

The most straightforward option to take into account node coordinates pi in
the latter models would be adding them (concatenation) to the feature vector
hi. This approach alone leads to the results enhancement but there is still space
for further improvement. That is why in this work we propose three strategies
allowing to inject additional spatial information into convolutional operation:

– Mpj, iq Ñ Mpj, iq ¨ aTpi,j - linear strategy where a P Rd is an additional
trainable parameter

– Mpj, iq ÑMpj, iq ¨MLPA2,b2,A1,b1ppi,jq - non-linear strategy where MLP4

is a multilayer perceptron with trainable parameters A2 P R1ˆk, b2 P R,
A1 P Rkˆd and b1 P Rk (k denotes the number of hidden units, there is 1
output)

3 LINA,bpxq “ Ax` b
4 MLPA2,b2,A1,b1pxq “ LINA2,b2pσpLINA1,b1pxqqq

78



Spatial Information in Graph Convolutional Neural Networks

Table 1: Comparison of classic approaches and proposed strategies applied in
GraphSAGE. All results were obtained using PyG framework (average value
from 5 runs is presented). Some of them, for superpixel-based representation of
MNIST available in PyG, were taken from [2] (in particular result for SGCN
method).

Method MNIST
MNIST

PyG
Fashion
MNIST

CIFAR10 AIDS

without position in input features

SplineConv 97.21% 95.22% [2] 87.46% 49.53% 81.47%
GMMConv 96.84% 91.11% [2] 86.62% 45.68% 80.58%
GraphSAGE 94.15% 79.88% 84.72% 55.69% 79.73%
SGCN - 95.95% [2] - - -

Ours linear 96.72% 97.49% 87.37% 63.03% 95.62%
Ours non-linear 98.29% 97.01% 87.22% 65.52% 95.58%
Ours enhanced 98.90% 97.91% 89.47% 67.68% 95.09%

with position in input features

SplineConv 97.52% 97.83% 87.50% 63.03% 95.62%
GMMConv 97.07% 96.10% 87.22% 61.80% 93.08%
GraphSAGE 98.01% 97.13% 88.09% 66.32% 93.48%

Ours linear 98.45% 97.78% 88.35% 65.11% 97.59%
Ours non-linear 99.05% 98.32% 88.41% 67.07% 96.96%
Ours enhanced 99.10% 98.81% 90.98% 73.23% 96.65%

– Mpj, iq ÑMpj, iq ¨ diagpMLPA2,b2,A1,b1ppi,jqq - enhanced non-linear strat-
egy, here A2 P Rnˆk, b2 P Rn, A1 P Rkˆd and b1 P Rk (there are n outputs)

It is worth noticing that this is a generic approach. It can be used with any
convolution operation that can be described by formula (1).

3 Results

In the conducted experiments we have analyzed how the proposed strategies in-
fluence the results of GraphSAGE model where Lpiq “ W1, Mpj, iq “ W2 are
trainable matrices, lpiq “ 0, mpj, iq “ 0 and

Ü

is a mean operator. Table 1
presents the results of those experiments with coordinates pi included in node
feature vectors hi of input signal and without them, respectively, for four differ-
ent datasets. First three of them are superpixel-based representations of images
(MNIST, Fashion MNIST, CIFAR10), whereas the last one (AIDS) contains
graph representation of chemical molecules. To make the results comparable in
all cases three convolutional layers were considered with ReLU as a non-linear
activation function. Since classification task was considered convolutional layers
were followed by MLP (two fully-connected layers with ReLU between them)

79



B. Wójcik, A Tomczyk

and while training cross-entropy lass was used. In all MLPs there were 64 hid-
den units.

Our results successfully demonstrate the increase of performance achieved
across all four datasets. In the case of image datasets, the enhanced non-linear
method was the most effective. Chemical compound AIDS dataset obtained the
highest accuracy using linear strategy. Conducted experiments show also evident
improvement when additionally coordinates pi are included in node feature vec-
tors hi. Since for the same image different superpixel-based representations can
be generated, to compare results with SGCN we have performed additional ex-
periments for MNIST dataset available in PyG framework ([3]). Also in this case
our strategies lead to better results.

4 Summary

In this work we have shown that properly used spatial information can improve
outcomes of graph convolutional neural networks, even if in its original form they
do not consider nodes coordinates at all. We have proposed several strategies
and proved (using GraphSAGE model and four well-known benchmarks) their
positive influence on the classification results. Our further research will focus
on experimenting with other models and datasets where spatial information is
available. Moreover, we want to check other strategies as well as apply this
approach for other tasks (e.g. node classification).

References

1. Brody, S., Alon, U., Yahav, E.: How attentive are graph attention networks? (2021)
2. Danel, T., Spurek, P., Tabor, J., Smieja, M., Struski, L., Slowik, A., Maziarka,

L.: Spatial graph convolutional networks. In: Neural information processing 27th
International Conference, ICONIP 2020 : Bangkok, Thailand, November 18-22, 2020
: proceedings, part V, pp. 668–675. Communications in Computer and Information
Science, ISSN 1865-0929, eISSN 1865-0937; Vol. 1333, Springer, Cham (2020)

3. Fey, M., Lenssen, J.E.: Fast graph representation learning with PyTorch Geometric.
In: ICLR Workshop on Representation Learning on Graphs and Manifolds (2019)

4. Fey, M., Lenssen, J.E., Weichert, F., Müller, H.: SplineCNN: Fast geometric deep
learning with continuous b-spline kernels. 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition pp. 869–877 (2018)

5. Hamilton, W.L., Ying, R., Leskovec, J.: Inductive representation learning on large
graphs. p. 1025–1035. NIPS’17, Curran Associates Inc., Red Hook, NY, USA (2017)

6. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. In: 5th International Conference on Learning Representations, ICLR 2017,
Toulon, France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net
(2017)

7. Lecun, Y., Bengio, Y.: Convolutional Networks for Images, Speech and Time Series,
pp. 255–258. The MIT Press (1995)

8. Monti, F., Boscaini, D., Masci, J., Rodola, E., Svoboda, J., Bronstein, M.M.: Geo-
metric deep learning on graphs and manifolds using mixture model cnns. In: 2017
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). pp. 5425–
5434. IEEE Computer Society, Los Alamitos, CA, USA (jul 2017)

80




